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OBJECTIVE—White adipose tissue (WAT) and brown adipose
tissue (BAT) play distinct roles in adaptation to changes in
nutrient availability, with WAT serving as an energy store and
BAT regulating thermogenesis. We previously showed that mice
maintained on a leucine-deficient diet unexpectedly experienced
a dramatic reduction in abdominal fat mass (Guo and Cavener,
Cell Metab 2007;5:103–141). The cellular mechanisms responsi-
ble for this loss, however, are unclear. The goal of current study
is to investigate possible mechanisms.

RESEARCH DESIGN AND METHODS—Male C57BL/6J mice
were fed either control, leucine-deficient, or pair-fed diets for 7
days. Changes in metabolic parameters and expression of genes
and proteins related to lipid metabolism were analyzed in WAT
and BAT.

RESULTS—We found that leucine deprivation for 7 days in-
creases oxygen consumption, suggesting increased energy ex-
penditure. We also observed increases in lipolysis and
expression of �-oxidation genes and decreases in expression of
lipogenic genes and activity of fatty acid synthase in WAT,
consistent with increased use and decreased synthesis of fatty
acids, respectively. Furthermore, we observed that leucine de-
privation increases expression of uncoupling protein (UCP)-1 in
BAT, suggesting increased thermogenesis.

CONCLUSIONS—We show for the first time that elimination of
dietary leucine produces significant metabolic changes in WAT
and BAT. The effect of leucine deprivation on UCP1 expression is
a novel and unexpected observation and suggests that the
observed increase in energy expenditure may reflect an increase
in thermogenesis in BAT. Further investigation will be required
to determine the relative contribution of UCP1 upregulation and
thermogenesis in BAT to leucine deprivation-stimulated fat loss.
Diabetes 59:1–2, 2010

O
besity develops from an imbalance between
calorie intake and energy expenditure (1). Ex-
cess calories are stored in the white adipose
tissue (WAT) as triglyceride (TG), which are

mobilized in response to increased energy demands (2).
Various strategies have been proposed to treat obesity by
promoting fat mobilization and/or increasing energy ex-
penditure (3–5).

Recently, there has been a growing interest in control-
ling body weight by manipulating macronutrients (6–8).
Recent studies have shown that dietary manipulation of
essential amino acids, including leucine, arginine, and
glutamine, have significant effects on lipid metabolism and
glucose utilization (9–14). Most of these studies, however,
have focused on the effects of increased levels of essential
amino acids in the diet (4,14–18). For example, Zhang et
al. (15) recently demonstrated that doubling intake of
dietary leucine decreases body weight and improves glu-
cose metabolism in mice maintained on a high-fat diet. The
effect of increasing dietary leucine, however, is controver-
sial. Additional studies have shown that dietary supple-
mentation of leucine has no effect on lipid metabolism
(16).

By contrast, our research has focused on the effect of
eliminating leucine from the diet on lipid metabolism. As
we recently reported, mice maintained on a leucine-
deficient diet for 7 days experienced a dramatic reduction
in abdominal fat mass (9). The cellular mechanisms re-
sponsible for this loss, however, are unclear. The goal of
our current research is to elucidate the molecular and
cellular mechanisms underlying the rapid abdominal fat
loss induced by leucine deprivation.

In our current study, we observed increases in lipolysis
and expression of �-oxidation genes and decreases in
expression of lipogenic genes and activity of fatty acid
synthase (FAS) in WAT, consistent with increased use and
decreased synthesis of fatty acids, respectively. In addi-
tion, we observed for the first time that leucine deprivation
increases expression of uncoupling protein (UCP)-1 in
brown adipose tissue (BAT), suggesting increased thermo-
genesis. We hypothesize that these changes in WAT and
BAT account for the significant loss of abdominal fat mass
under leucine deprivation.

RESEARCH DESIGN AND METHODS

Animals and diets. Wild-type male C57BL/6J mice were obtained from
Shanghai Laboratory Animal Company (Shanghai, China). Eight- to ten-week-
old mice were maintained on a 12-h light/dark cycle at 25°C and were provided
free access to commercial rodent food and tap water before the experiments.
Control (nutritionally complete amino acid) and (�) leu (leucine-deficient)
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diets were obtained from Research Diets (New Brunswick, NJ). All diets were
isocaloric and compositionally the same in terms of carbohydrate and lipid
component. At the start of the feeding experiment, mice were acclimated to a
control diet for 7 days and then randomly divided into either control or (�) leu
diet groups with free access to either control or (�) leu diet, respectively, for
7 days. In addition, a pair-fed group was included to distinguish possible
influences from a minor reduction in food intake previously observed in the
(�) leu group (9). The pair-fed mice were provided with 15% less food
compared with mice in the control diet group. This percentage was deter-
mined by our observation in the current study that, on average, mice
maintained on a leucine-deficient diet consumed 15% less food compared with
mice maintained on a control diet. Food intake and body weight were
recorded daily. At the end of the experiment, the total body fat content of each
mouse was quantified in vivo by a mini-spec nuclear magnetic resonance
spectrometer (Bruker Corporation), following the manufacturer’s protocol.
Animals were killed by CO2 inhalation. WAT weight was recorded at the time
of death. Adipose tissues were isolated and either put into 4% paraformalde-
hyde buffer immediately for histological study or snap-frozen and stored at
�80°C for future analysis. These experiments were conducted in accordance
with the guidelines of the Institutional Animal Care and Use Committee of the
Institute for Nutritional Sciences (Sibs, CAS).
Indirect calorimetry. After 6 days of feeding with either control, leucine-
deficient, or pair-fed diets, mice were maintained in a comprehensive lab
animal monitoring system (Columbus Instruments, Columbus, OH) for 24 h
according to the instructions of the manufacturer. Volume of O2 consumption
and CO2 production were continuously recorded over a 24-h period.
Rectal temperature measurement. The rectal temperatures of the mice
were measured using a rectal probe attached to a digital thermometer
(Physitemp, Clifton, NJ).
Oxygen consumption measurement. Brown adipocytes were isolated and
oxygen consumption was measured using a Clark-type oxygen electrode
(Hansatech Instruments, Norfolk, U.K.), as previously described (19), with
minor modifications. Each sample was analyzed by incubating 1 � 106 cells in
a magnetically stirred chamber at 37°C. After the basal respiration was
recorded, 5 mmol/l oleate was added to determine the maximal oxygen
consumption.
Serum measurements. Serum was obtained by centrifugation of clotted
blood and then snap-frozen in liquid nitrogen and stored at �20°C. Serum free
fatty acids and glycerol were determined enzymatically using a NEFA C
Reagent (Wako) and Glycerol Assay kit (SinoPCR, China), respectively. Serum
norepinephrine, thyroid hormone 3,5,3�-triiodothyronine (T3), epinephrine,
and glucocorticoid levels were determined using enzyme-linked immunosor-
bent assay kits from R&D. All of these assays were performed according to
manufacturer’s instructions.
Analysis of cell volume and DNA content in WAT. WAT was fixed in 4%
paraformaldehyde overnight and stained with hematoxylin and eosin. The
WAT cell volumes were analyzed as described previously (20). DNA content in
WAT samples was quantified as previously reported (21).
Western blot analysis. Whole-cell lysates from frozen tissues were isolated
using RIPA lysis buffer (150 mmol/l Tris-HCl, 50 mmol/l NaCl, 1% NP-40, 0.1%
Tween-20). Protease and phosphatase inhibitors were added to all buffers
before experiments. Western blot was performed as previously described (9).
Protein concentrations were assayed using a BCA Kit (Pierce). Primary
antibodies (anti-FAS antibody [BD Scientific], anti-PPAR�, anti-p-HSL, anti-
HSL, anti-p-PKA substrate antibodies [Cell Signaling], anti-actin antibody
[Sigma], and anti-SREBP1c and anti-UCP1 antibodies [Santa Cruz Biotechnol-
ogy]) were incubated overnight at 4°C, and specific proteins were visualized
by ECL Plus (Amersham Biosciences). Band intensities were measured using
Quantity One (Bio-Rad Laboratories) and normalized to actin.
FAS enzyme activity assay. FAS activity was determined as described by
Kim et al. with minor modifications (22). The rate of NADPH oxidation was
measured at 340 nm before and after addition of the substrate malonyl-CoA.
The concentration of enzyme was adjusted to assure a linear reaction rate.
Protein concentration in the homogenate was determined by the BCA Kit
(Pierce).
RNA isolation and relative quantitative RT-PCR. Total RNA was pre-
pared from frozen tissues with TRIZOL (Invitrogen) reagent. One microgram
of RNA was reverse-transcribed with random primer (Invitrogen) and M-MLV
Reverse Transcriptase (Invitrogen). Quantitative amplification by PCR was
carried out using SYBR Green I Master Mix reagent by an ABI 7500 system
(Applied Biosystem). PCR products were subjected to a melting curve
analysis. Cycle numbers of both GAPDH (as an internal control) and cDNAs
of interest at a specific threshold within the exponential amplification range
were used to calculate relative expression levels of the genes of interest. The
sequences of primers used in this study are available upon request.
Glycerol release assay. WAT was removed and incubated in Krebs-Ringer
HEPES buffer containing 1 mg/ml collagenase (Sigma) and 2% bovine serum

albumin as previously described (23). Freshly isolated adipocytes were
incubated in Krebs-Ringer HEPES buffer containing adenosine deaminase
(Sigma) in the absence or presence of isoproterenol (1 �mol/l), followed by
glycerol assay with the Glycerol assay kit (SinoPCR, China).
Statistical analysis. All data are expressed as means � SE. Significant
differences among the control, (�) leu, and pair-fed groups were assessed
using a one-way ANOVA followed by the Student-Newman-Keuls test. P 	 0.05
was considered statistically significant.

RESULTS

Leucine deprivation results in significant reduction

in fat mass and increase of energy expenditure. We
previously showed that mice maintained on a leucine-
deficient diet undergo rapid loss of abdominal fat (9). The
goal of the present study is to elucidate the underlying
molecular and cellular mechanisms of this loss. For this
purpose, mice were fed control, leucine-deficient, or pair-
fed diets for 7 days. Consistent with a previous report (9),
leucine deprivation for 7 days resulted in an 
15% reduc-
tion in food intake and body weight compared with mice
maintained on the control diet (Fig. 1A and B). The extent
of abdominal fat loss in mice fed a leucine-deficient diet
(Fig. 1C) was also similar to that reported in our previous
study (9). By contrast, body weight was reduced 	5% (Fig.
1B) and abdominal fat was not significantly reduced (Fig.
1C) in pair-fed mice, compared with control diet–fed mice.
In addition, the total body fat was significantly decreased
by leucine deprivation in comparison with the control and
pair-fed mice, whereas there was no difference in the
proportion of lean mass among the groups as measured by
nuclear magnetic resonance (Fig. 1D and E).

The rapid fat loss induced by leucine deprivation sug-
gested a possible increase in energy expenditure. We
therefore measured energy expenditure by indirect calo-
rimetry, rectal temperature, and physical activity. The
total energy expenditure (24-h O2 consumption, normal-
ized to lean body mass) was markedly increased (Fig. 2A)
in leucine-deprived mice, but not in pair-fed mice, com-
pared with mice maintained on a control diet. The respi-
ratory exchange ratio (RER) (VCO2/VO2) was low in
leucine-deprived mice during both dark phases and light
phases. By contrast, pair-fed mice exhibited lower RER
only during the light phase (Fig. 2B). Rectal temperatures
measured at 3:00 P.M. in the afternoon (basal metabolic
state) were significantly higher in leucine-deprived mice,
but were lower in pair-fed mice, compared with mice
maintained on a control diet (Fig. 2C). We did not,
however, see significant differences in rectal tempera-
tures at other times examined (morning or evening, data
not shown). We also did not see increased physical
activity in leucine-deprived mice, measured in a meta-
bolic cage (Fig. 2D).

Serum free fatty acid (FFA) and glycerol levels were
much lower in leucine-deprived mice than in pair-fed and
control diet–fed groups (Table 1). Levels of serum hor-
mones including norepinephrine, T3, epinephrine, and
glucocorticoids were also examined in mice under differ-
ent diets (Table 1). Serum norepinephrine and T3 levels
were higher in mice maintained on a leucine-deficient diet
compared with pair-fed and control groups. Serum epi-
nephrine levels were increased in both pair-fed and
leucine-deprived mice, and there was no difference be-
tween these two groups. Levels of serum glucocorticoids
were not affected by leucine deprivation.
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Leucine deprivation reduces WAT cell volume.
Leucine deprivation–induced abdominal fat loss may re-
sult from decreased adipocyte volume and/or number.
Histological analysis of WAT showed that leucine deprivation
resulted in a 42% reduction in adipocyte volume compared
with mice fed a control diet (Fig. 3A and B). By contrast, the
adipocyte volume was only slightly reduced in pair-fed mice
(Fig. 3A and B). However, cell numbers were the same in
mice maintained on each of the three diets, as demonstrated
by DNA content (Fig. 3C). Consistent with these findings, no
apoptosis was detected by Tdt-mediated dUTP nick end
labeling (TUNEL) staining in mice maintained on a leucine-
deficient diet (data not shown).
Leucine deprivation accelerates triglyceride lipolysis
and expression of �-oxidation genes in WAT. To
investigate whether the diminished adipocyte volume ob-
served in leucine-deprived mice was the result of in-
creased triglyceride lipolysis and/or fatty acid �-oxidation,
we examined changes in levels of phosphorylated proteins
related to each of these processes. Levels of total HSL in
WAT were not significantly different among the three
groups. By contrast, levels of phosphorylated HSL (p-HSL)
were significantly increased in WAT of leucine-deprived
mice, but were not increased in pair-fed mice, compared
with mice fed a control diet (Fig. 4A). Consistent with
increased levels of phosphorylated HSL, levels of phos-
phorylated substrate for PKA, the kinase that phosphory-
lates HSL (24), were also elevated in WAT of leucine-
deprived mice, but not in pair-fed mice (Fig. 4A).

To further investigate the effect of leucine deprivation on
lipolysis, we compared basal and stimulated glycerol release
in WAT isolated from mice under the three different diets.
Rates of glycerol release, under basal conditions and after
stimulation with the �-adrenoceptor agonist isoproterenol,
were significantly higher in adipocytes isolated from leucine-

deprived mice, but were not significantly changed in pair-fed
mice, compared with mice maintained on control diet (Fig.
4B). Increased lipolysis in these mice was accompanied by
increased cAMP levels (Fig. 4C) and expression of �3-
adrenoceptors (Adrb3) mRNA (Fig. 4D).

To examine if genes and proteins related to fatty acid
�-oxidation are differentially regulated in WAT of mice fed
control, leucine-deficient, or pair-fed diets, we examined
the expression levels of mRNAs encoding the transcrip-
tion factor peroxisome proliferator–activated receptor
(PPAR)-� and its target genes carnitine palmitoyltrans-
ferase 1 (Cpt1) and fatty acyl-CoA oxidase (Aco). These
genes were significantly increased in WAT of mice main-
tained on a leucine-deficient diet compared with mice
maintained on control diet, whereas mice maintained on a
pair-fed diet exhibited no significant increase in expres-
sion (Fig. 4E). Increased expression of Ppar� mRNA in
leucine-deprived mice was accompanied by an almost
200% increase in PPAR-� protein compared with mice fed
a control diet, whereas it was unchanged in mice main-
tained on a pair-fed diet (Fig. 4F).
Leucine deprivation represses lipogenesis in WAT.
Impaired lipogenesis is another potential cause of dimin-
ished fat mass under leucine deprivation. For this reason,
we investigated whether genes underlying the synthesis of
fatty acids were differentially regulated in mice under differ-
ent diets. These proteins included acetyl CoA carboxylase 1
(ACC1), FAS, and stearoyl CoA desaturase (SCD)-1. Our
previous study demonstrated that leucine deprivation sig-
nificantly decreased FAS activity in liver (9). Similarly, in
this study, we found that levels of Fas mRNA and protein
were greatly reduced in WAT of mice maintained on a
leucine-deficient diet, but not in pair-fed mice, compared
with mice maintained on a control diet (Fig. 5A and B).
Consistent with these changes, FAS enzyme activity was
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FIG. 1. Body weight and fat mass decreases in leucine-deprived mice. Mice were fed a control, leucine-deficient, or pair-fed diet for 7 days. Body
weight and food intake were monitored daily. Data are means � SE of at least two independent experiments with mice of each diet for each
experiment (control diet, n � 6; (�) leu diet, n � 6; pair-fed diet, n � 6). Statistical significance was determined by one-way ANOVA followed
by the Student-Newman-Keuls test for the effect of either (�) leu or pair-fed diet versus control diet (*P < 0.01) or (�) leu diet versus pair-fed
diet (#P < 0.01). A: Food intake change. (In every case, pair-fed mice consumed all of this food every day. For this reason, there are no error bars
for food intake in this group.) B: Body weight reduction. C: Adipose tissue mass in proportion to body weight. D: Body composition measured with
nuclear magnetic resonance.
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significantly reduced in WAT of mice fed a leucine-defi-
cient diet, but was not reduced in pair-fed mice (Fig. 5C).
Leucine deprivation also resulted in a large decrease in the
mRNA levels of AccI and Me in WAT of leucine-deprived
mice, but not in pair-fed mice (Fig. 5A). Only Scd1 mRNA,
among the fatty acid synthesis genes, was reduced in both
leucine-deprived and pair-fed mice (Fig. 5A). Levels of
SREBP-1c protein, the transcription factor regulating tran-
scription of genes for fatty acids synthesis such as FAS
(25), were also downregulated in WAT of leucine-deprived
mice (Fig. 5D).
Leucine deprivation increases expression of �-oxida-
tion genes in BAT. Many studies have demonstrated that
increased lipolysis increases levels of FFA in serum.
Despite increased lipolysis, however, levels of FFA in
serum are low in leucine-deprived mice (Table 1), suggest-

ing possible increased fatty acid utilization by other tis-
sues, including liver, BAT, and skeletal muscle. We have
previously shown that �-oxidation is not upregulated in
livers of mice fed a leucine-deficient diet (9). Fatty acid
�-oxidation–related genes were significantly increased in
BAT of leucine-deprived mice, but not in pair-fed mice,
compared with mice maintained on control diet (Fig. 6A).
Levels of fatty acid transport protein (Fatp) and lipopro-
tein lipase (Lpl) mRNA were also significantly increased in
BAT of leucine-deprived mice (Fig. 6A). Fatty acid �-oxi-
dation–related genes were also increased in muscle of
leucine-deprived mice (data not shown).
Leucine deprivation increases expression of UCP1 in
BAT. The main function of BAT is thermogenesis, which is
mediated by upregulation of UCP1. Levels of Ucp1 mRNA
and protein were significantly increased in BAT of mice
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FIG. 2. Leucine deprivation increases energy expenditure. The energy expenditure was measured by indirect calorimetry in mice fed a control,
leucine-deficient, or pair-fed diet for 7 days. A: 24-h oxygen consumption. B: RER. An RER of 0.70 indicates that fat is the predominant fuel source;
a RER of 0.85 suggests a mix of fat and carbohydrates, and a value of >1.00 is indicative of carbohydrate being the predominant fuel source. C:
Rectal temperature. D: Physical activity. Data are means � SE of at least two independent experiments with mice of each diet for each experiment
(control diet, n � 6; (�) leu diet, n � 6; pair-fed diet, n � 6) over 24–48 h after 6 h acclimation to the metabolic chamber. Statistical significance
was determined by one-way ANOVA followed by the Student-Newman-Keuls test for the effect of either (�) leu or pair-fed diet versus control
diet (*P < 0.01) or (�) leu diet versus pair-fed diet (#P < 0.01).

TABLE 1
Serum measurements in mice maintained on different diets

Control (�) leu Pair-fed

Norepinephrine (ng/l) 219.15 � 16.64 301.63 � 15.61*† 193.52 � 11.83
Epinephrine (�g/l) 100.07 � 3.76 140.22 � 11.49* 117.88 � 3.46*
Glucocorticoid (nmol/l) 134.03 � 11.76 109.23 � 14.41 108.36 � 14.25
T3 (pmol/l) 14.53 � 1.18 39.39 � 3.14*† 26.67 � 2.98*
Glycerol (mmol/l) 0.54 � 0.07 0.23 � 0.05*† 0.56 � 0.06
FFA (mmol/l) 0.50 � 0.09 0.27 � 0.03*† 0.44 � 0.04

Data are means � SE. Two- to three-month-old mice were maintained on either nutritionally complete amino acid diet (control), diet devoid
of leucine �(�) leu�, or pair-fed diet for 7 days. Numbers of mice used: n � 6 in each group. Statistical significance is calculated by one-way
ANOVA followed by the Student-Newman-Keuls test for the effect of either (�) leu or pair-fed diet versus control diet (*P 	 0.05) or (�) leu
diet versus pair-fed diet (†P 	 0.05).
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maintained on a leucine-deficient diet, but not in pair-fed
mice, compared with mice maintained on a control diet
(Fig. 6B and C), consistent with increased thermogenesis
in these mice. Oxygen consumption was also significantly

increased in BAT isolated from mice maintained on a
leucine-deficient diet, under basal conditions and after
stimulation with oleate, compared with pair-fed or control
diet–fed mice (Fig. 6D).
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To investigate the mechanisms by which leucine depri-
vation on UCP1 expression, we examined expression
levels of transcription factors that regulate UCP1 gene
expression, including peroxisome proliferator–activated
receptor  coactivator gene (PGC1)-�, PPAR-, and
CCAAT enhancer binding protein (c/EBP)-� (26,27). Ex-
pression of Pgc1� and Ppar� mRNA in BAT was signifi-
cantly increased by leucine deprivation, but unchanged by
pair-fed diet, compared with mice maintained on control
diet. By contrast, c/EBP� mRNA was not changed in BAT
from mice maintained on either diet (Fig. 6E). Increased
UCP1 is regulated by the sympathetic nervous system
through the activation of Adrb1 and Adrb3. Our results
showed that levels of Adrb1 and Adrb3 mRNA in BAT
were significantly increased in leucine-deprived mice com-
pared with mice maintained on control diet, whereas
pair-fed mice exhibited no induction of Adrb1 and Adrb3
mRNA (Fig. 6F). Consistent with increased serum T3
levels, mRNA level of Dio2, encoding type II deiodinasese,
which generates T3 via deiodination of its precursor
thyroxine (28,29), was also increased in BAT of mice
maintained on leucine-deficient diet compared with pair-
fed or control diet–fed mice (Fig. 6F).

DISCUSSION

In our previous study, we showed for the first time that
leucine deprivation for 7 days results in a significant
reduction in abdominal adipose mass accompanied by

various metabolic changes (9). The molecular and cellular
mechanisms responsible for these changes, however, were
unclear. The goal of our current study is to elucidate the
mechanisms underlying fat loss induced by leucine depri-
vation.

Consistent with our previous observations (9), the re-
sults of the present study show that leucine deprivation
significantly reduces body weight and abdominal adipose
mass without affecting proportion of lean body mass. Mice
maintained on a leucine-deficient diet, however, reduced
their food intake by 15%. These results are consistent with
previous studies showing that mice consume less food
when provided with a diet deficient in essential amino
acids (9,14). It is unclear, however, why these mice
consume less food compared with control diet.

To distinguish the influence of reduced food intake from
that of leucine deprivation, we included a pair-fed group in
the current study. Although a minor decrease in average
body weight was observed in these mice, abdominal
adipose mass was similar to that in control mice, suggest-
ing that the observed reductions in leucine-deprived mice
are primarily due to deficiency of leucine, rather than the
small reduction in food intake.

It has been established that leucine plays an important
role in regulation of metabolism (9,14,30). The direct link
between leucine and lipid metabolism is demonstrated by
our previous (9) and current work, which showed that a
leucine-deficient diet resulted in significant reduction in
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adipose mass in mice. Furthermore, in our current study,
we show that this reduction is caused by a reduction in
cell volume, rather than cell number. Because adipocyte
volume is determined by the content of intracellular lipids
(31), we hypothesized that reduction of adipocyte volume
resulted from increased mobilization of intracellular fat.
As predicted, we found that triglyceride lipolysis in WAT
was substantially stimulated by leucine deprivation.

Fat mobilization in response to increased energy re-
quirements is normally mediated via increased activities of
the sympathetic nerve system (32). Increased release of
norepinephrine from sympathetic nerves innervating adi-
pose tissue activates Adrb3 on the surface of adipocytes,
which interacts with G� to stimulate adenylate cyclase.
The resulting increase in intracellular levels of cAMP
activates PKA, which phosphorylates and activates HSL
(33). We found that leucine deprivation also increased
levels of cAMP and phosphorylated-PKA substrates includ-
ing HSL, suggesting that the leucine deprivation–induced
fat mobilization is mediated by the cAMP-PKA-HSL path-
way. Consistent with these results, the expression of
Adrb3, the main isoform of �-adrenoceptors in WAT, was
dramatically upregulated by leucine deprivation.

In addition to the sympathetic nervous system, fat
mobilization can also be regulated by hormones, such as
insulin, which acts to inhibit lipolysis (34). The significant
reduction in plasma insulin in leucine-deprived mice may
attenuate its inhibitory effect on lipolysis (9), resulting in
increased fat mobilization. However, further investigation
will be required to determine the relative contributions of
the SNS and insulin or other hormones in the regulation of
leucine deprivation–induced fat mobilization.

Consistent with previous observations in liver (9,35), we

found that leucine deficiency, but not pair-feeding, sub-
stantially suppressed lipogenesis in WAT, suggesting that
impaired lipogenesis could be another important contrib-
utor to fat loss. Taken together, these results suggest that
leucine deprivation–induced fat loss in WAT is due to both
activation of triglyceride lipolysis and suppression of fatty
acids synthesis. These changes are consistent with the
observed low RER, which implies that fat is the major
source of energy in leucine-deprived mice. RER was also
low in pair-fed mice, but this likely reflects the fact that
food was usually completely gone by this time. It has been
previously shown that lipolysis of triglyceride is stimu-
lated during the initial phase of food deprivation, releasing
fatty acids as a source of energy (36). This may explain
why fat was the major source of energy during the light
phase, resulting in a decrease in RER in pair-fed mice.

Decreased serum FFA levels in leucine-deprived mice
suggest that either most of the released FFA undergo
�-oxidation in WAT or is rapidly taken up from the serum
and metabolized by other tissues, such as liver, BAT, or
skeletal muscle. In fact, �-oxidation–related genes are
upregulated in WAT, BAT, and skeletal muscle (data not
shown) in leucine-deprived mice. Because fatty acid oxi-
dation in WAT makes only a minor contribution to low
serum FFA (37), we hypothesize that increased �-oxida-
tion in BAT and skeletal muscle is responsible for the
major portion of this decrease. Furthermore, expression of
genes encoding proteins for fatty acid uptake are in-
creased in BAT in mice maintained on a leucine-deficient
diet, which is also consistent with an increased uptake of
fatty acids into BAT.

BAT oxidizes fat to produce heat (19,38), which in-
creases concomitantly with the expression of UCPs (39).
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The role of UCP1, the major isoform expressed in BAT, in
thermogenesis regulation of body weight is demonstrated
by the development of obesity in UCP1-ablated mice (40).
Furthermore, upregulation of UCP1 expression results in
increased thermogenesis and energy expenditure, which
helps to protect from fat accumulation and obesity (41).
Consistent with increased UCP1 expression, rectal tem-
perature and oxygen consumption measured in isolated
BAT are increased in leucine-deprived mice, suggesting
increased thermogenesis. Increased thermogenesis in
leucine-deprived mice could account for increased energy
expenditure, as shown by increased oxygen consumption.
However, it remains unclear how expression of UCP1 is
upregulated in these mice.

The expression of UCP1 is under a complex control by
SNS and hormones. It has been reported that Ucp1 mRNA
expression in response to overfeeding or cold exposure is
upregulated because of increased activities of sympathetic
nerves (39,42,43). This upregulation is mediated by the
transcription factor PGC-1� (26,44). In our current study,
we observed that PGC-1� expression is also increased in
mice maintained on a leucine-deficient diet, suggesting
that increased UCP1 expression is mediated by PGC-1�.

In addition to SNS, multiple hormones and factors have
been shown to affect UCP1 transcription. Most of these,
including norepinephrine and T3, increase UCP1 expres-
sion, whereas glucocorticoids decrease UCP1 expression
(45). The increased serum levels of norepinephrine are
consistent with increased SNS activity in leucine-deprived
mice. The increased levels of serum T3 and expression of
dio2 in BAT of leucine-deprived mice suggest a potential
role for T3 in regulation of UCP1 expression. Glucocorti-
coids do not seem to be involved in UCP1 regulation under
leucine deprivation.

It remains unclear, however, if leucine deprivation has a
direct or indirect effect on UCP1 regulation in BAT. One
possibility is that leucine deprivation increases UCP1
expression indirectly by increasing lipolysis in WAT, lead-
ing to increased serum FFAs. FFAs in serum would be
rapidly taken up by BAT, where they would stimulate
expression of UCP1 to increase thermogenesis and energy
expenditure, as previously shown in another study (19).
Another possibility is that leucine deprivation first upregu-
lates UCP1 expression, thereby increasing energy expen-
diture by increasing thermogenesis. Increased energy
expenditure would be expected to consume more fatty
acids released from WAT, therefore indirectly stimulating
fat loss. It is possible of course that leucine deprivation
affects both WAT and BAT. Further investigation will be
required to distinguish these models.

We did not see increased physical activity in leucine-
deprived mice, measured in a metabolic cage. We could
not, however, rule out the possibility that muscle contrib-
utes to leucine deprivation–increased energy expenditure
by increasing thermogenesis. Consistent with this idea,
expression of �-oxidation genes, Ucp3, and T3 target gene
Serca1 (46) was increased in leucine-deprived mice com-
pared with pair-fed or control diet–fed groups (data not
shown). Further studies will be required to determine the
relative contribution of BAT and skeletal muscle for
leucine deprivation–stimulated fat loss.

It will also be interesting to determine whether defi-
ciency of other essential amino acids have the same effect
as leucine deficiency on WAT, BAT, and muscle that we
observed in this study. A previous study by the Semenk-
ovich group (35) showed that expression of FAS mRNA is

suppressed in HepG2 cells in medium deficient of any
essential amino acids, but not by nonessential amino
acids. Based on this result, we speculate that deficiency of
other essential amino acids may produce similar effects.

In summary, we show that the rapid abdominal fat loss
by leucine deprivation is caused by increased fat mobili-
zation and suppressed fatty acid synthesis in WAT, as well
as increased energy expenditure, most likely through
increased thermogenesis. Our data strongly indicate a role
for BAT in this increased thermogenesis. Our observations
provide a rationale for the (short-term) use of dietary
deprivation or restriction of leucine for the treatment of
obesity and associated metabolic diseases. Independent
studies will be required, however, to determine the safety
of dietary leucine restriction in therapeutic applications.
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